Learning Models of Relational Stochastic Processes

نویسندگان

  • Sumit Sanghai
  • Pedro Domingos
  • Daniel Weld
چکیده

Processes involving change over time, uncertainty, and rich relational structure are common in the real world, but no general algorithms exist for learning models of them. In this paper we show how Markov logic networks (MLNs), a recently developed approach to combining logic and probability, can be applied to time-changing domains. We then show how existing algorithms for parameter and structure learning in MLNs can be extended to this setting. We apply this approach in two domains: modeling the spread of research topics in scientific communities, and modeling faults in factory assembly processes. Our experiments show that it greatly outperforms purely logical (ILP) and purely probabilistic (DBN) learners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling

The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches‎. ‎In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques‎. ‎Jump processes are applied to model different and complex situations in cyber games‎. ‎Applying jump processes we propose some m...

متن کامل

Stochastic Relational Processes and Models

In order to solve real-world tasks, intelligent machines need to be able to act in noisy worlds where the number of objects and the number of relations among the objects varies from domain to domain. Algorithms that address this setting fall into the subfield of artificial intelligence known as statistical relational artificial intelligence (StaR-AI). While early artificial intelligence systems...

متن کامل

An extension of stochastic differential models by using the Grunwald-Letnikov fractional derivative

Stochastic differential equations (SDEs) have been applied by engineers and economists because it can express the behavior of stochastic processes in compact expressions. In this paper, by using Grunwald-Letnikov fractional derivative, the stochastic differential model is improved. Two numerical examples are presented to show efficiency of the proposed model. A numerical optimization approach b...

متن کامل

Relational Data Learning

The past decade has witnessed many new theories and applications for statistical machine learning. However, most of statistical machine learning techniques are developed for a predetermined situation; it is static and inflexible, has flat structure and only deals with attributes (random variables) without any concept of objects. To some extent, these limitations make it hard to apply these stat...

متن کامل

Stochastic Gradient Descent for Relational Logistic Regression via Partial Network Crawls

Research in statistical relational learning has produced a number of methods for learning relational models from largescale network data. While these methods have been successfully applied in various domains, they have been developed under the unrealistic assumption of full data access. In practice, however, the data are often collected by crawling the network, due to proprietary access, limite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005